Corporación para la Investigación y la Innovación

Crecimiento verde en el sector energético y sus efectos en el desempeño económico general: desarrollo y aplicación de un modelo híbrido para Colombia

Andrés Camilo Álvarez-Espinosa; Javier Darío Burgos-Salcedo; Diana Carolina Sierra-Cárdenas

> Seminario Energías Renovables y Bioeconomía Cali- Colombia, 26 de septiembre de 2017 Auditorio SIDOC - Universidad Icesi

¿Es posible establecer una senda de crecimiento a partir del balance entre energía y ambiente?

¿es posible hablar de crecimiento "verde"?

Respuesta. Se requiere "... una mejor comprensión de los factores clave que explican cómo y en qué contexto surge el cambio tecnológico para diseñar adecuadamente las políticas (...) dirigidas a promover tecnologías amigables" (Maréchal, 2007)

Agenda

- Objetivos
- Revisión literatura
 - Modelos sectoriales (bottom up)
 - Modelos generales (topdown)
- Modelo híbrido
 - Estructura de producción
 - Características
 - Información base
 - Supuestos

- Resultados
 - Penetración de renovables no convencionales
 - Impuesto al carbono para lograr NDC
- Mensajes finales.

Objetivos

Desarrollar el modelo de equilibrio general híbrido, calibrado para la economía colombiana

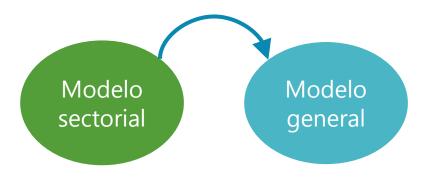
□ Evaluar el efecto macroeconómico de medidas de política enfocadas a la reducción de emisiones de GEI.

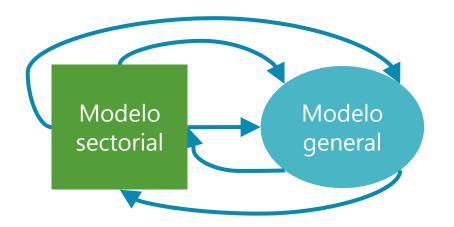
Modelos sectoriales (bottom - up)

Modelo sectorial

Ventajas	Desventajas			
Caracterización tecnológica	Solo un (1) sector			
Progreso técnico (optimismo tecnológico)	No hay vinculo con los demás sectores, se desconoce el efecto macroeconómico			
Permite determinar el precio sombra (factor de escases)	Los precios no tienen efecto rebote			
Facilita la evaluación de políticas y hojas de ruta para alcanzar determinados objetivos	Asumen que las tecnologías son perfectamente sustituibles			

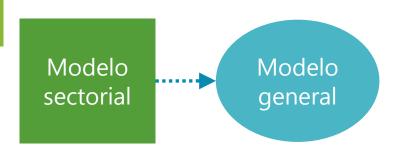
Elaborado a partir de Shukla P. R. (2013)

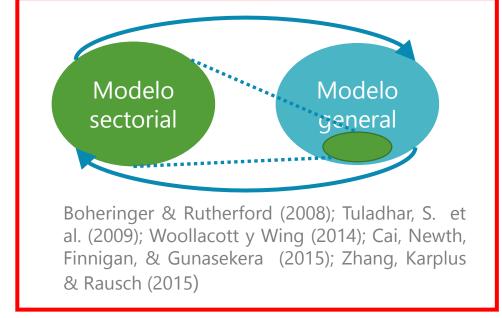



Modelos generales (Top – down)

Modelo general

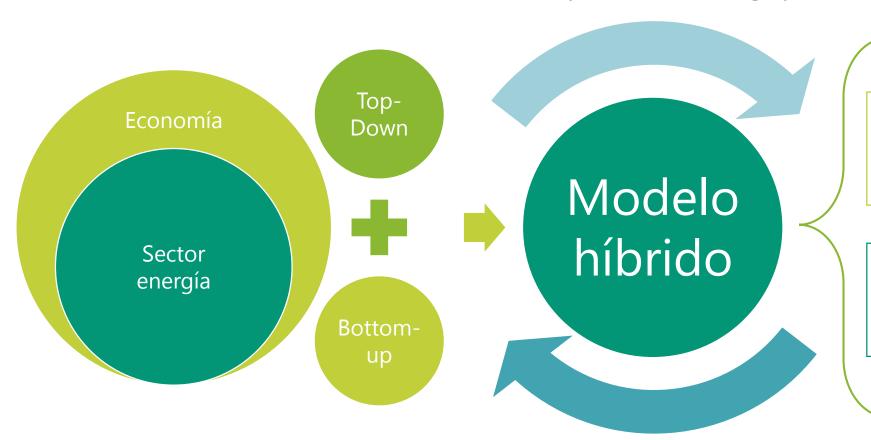
Ventajas	Desventajas				
Efectos económicos endógenos, precios reflejan efecto rebote	Existencia de mercados perfectos				
Adecuados para encontrar el valor de variables claves	Elasticidades de sustitución son históricas, "validas" para el futuro				
Dinámica global (en modelos IA)	No reflejan correctamente la evaluación de políticas orientadas a tecnologías (pesimismo tecnológico)				
Apropiados para horizontes de largo plazo	No consideran co-beneficios				


Elaborado a partir de Shukla P. R. (2013)


Revisión de la literatura

Labriet et al (2015), Tapia- Ahumada, Octaviano, Rausch & Pérez-Arriaga (2015), Dai, Mischke, Xie, Xie, & Masui, 2016

Wing (2006, 2008)


Evalúan el impacto económico de políticas sobre las energías renovables no convencionales.

Modelo híbrido. Aprovechando ventajas, solucionando deficiencias

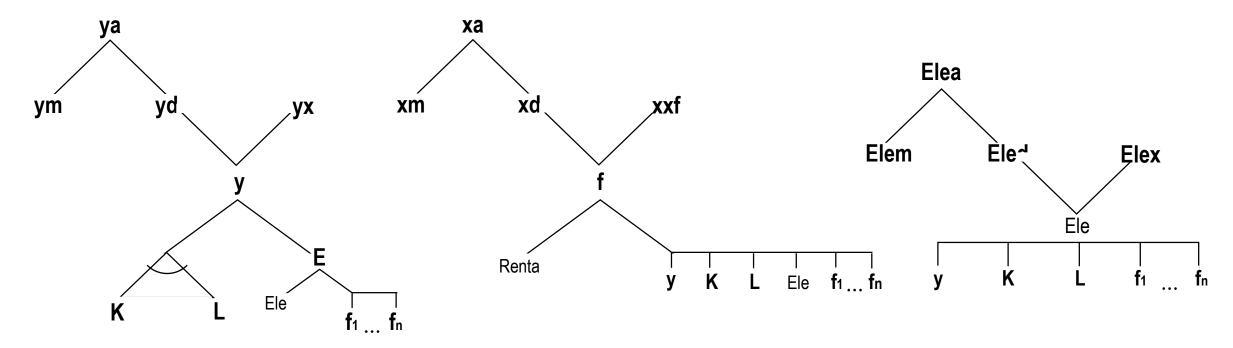
Mixed complementary problem

Desempeño económico

• PIB, empleo, consumo, déficit comercial, efectos sectoriales

Desempeño energía

• Balance energético, penetración de renovables...


Mixed complementary problem

	Desigualdad	Variable complementaria		
Cero beneficios	$MC_i \geq p_i$	$X_i \geq 0$		
Vaciado de mercado	$X_j \geq D_j$	$p_j \ge 0$		
Balance ingresos gastos	$G_{\rm k} \ge M_{\rm k}$	$M_{\rm k} \ge p \cdot W_k$		

La aproximación permite integración directa de las actividades (BU) en la cual las tecnologías pueden producir uno o mas productos sujetos a la restricción de capacidad.

Modelo híbrido - Estructura de producción

- producción del bien no energético
- X_f E_t provisión del combustible fósil
- producción de electricidad por energía t
- composición final del consumo
- W utilidad

Modelo híbrido. Características

- Un hogar representativo, maximiza
 Tecnologías de generación su bienestar
- Modelo dinámico
- Año base 2010
- Energéticos de combustibles fósiles
 - carbón, gas natural, derivados de petróleo
- Programado en formato MCP

- existentes
 - Hydro, carbón, gas natural, derivados de petróleo
- Tecnologías de generación nuevas/futuras
 - Solar, eólica, biomasa

Modelo híbrido. Información base

		Sectores económicos						
		Bienes no energéticos (Y)	Carbón (Coal)	Derivados (Oil)	Electricidad (Ele)	Gas natural (Gas)	Consumo	
	Bienes no energéticos (Y)	450,99	-2,25	-6,84	-5,01	-1,77	-435,11	
iviei calicias	Carbón (Coal)	-0,15	10,65	-0,14	-0,15	0,00	-10,21	
	Petróleo y derivados (Oil)	-18,16	-0,15	48,47	-0,03	-0,01	-30,12	
	Electricidad (Ele)	-8,43	-0,05	-0,10	15,91	-0,01	-7,32	
	Gas natural (Gas)	-1,46	0,00	-0,45	-0,40	4,59	-2,29	
	Trabajo	-293,53	-1,38	-2,78	0,00	-0,38	298,07	
	Capital	-129,25	0,00	0,00	-10,32	0,00	139,57	
	Renta	0,00	-6,82	-38,17	0,00	-2,43	47,42	

MCS año base 2010 *sistema de cuentas nacionales*

Modelo híbrido. Información base

Estructura uno (Estr.1): Cada proyecto tipo tiene costos nivelados de la electricidad discriminado por rubros, y se agrega en distintos ítems. Luego, de cada ítem se obtiene su participación porcentual frente al costo total por kilowatt instalado. Fuente: Modelo JEDI (National Renewable Energy Laboratory, 2015)

Estructura dos (Estr.2): Se toma el costo total de cada ítem de los proyectos y su erogación en el tiempo. Se usa la participación porcentual del valor presente, descontado al 5%, de cada uno de los ítems.

Estructura tres (Estr.3): En este caso se toman los costos nivelados de la electricidad (LCOE) discriminado por varios rubros, y se agrega en distintos ítems. Luego, de cada ítem se obtiene su participación porcentual frente al costo total por kilowatt. Fuente: Lazard (2014).

Modelo híbrido. Información base

	Estr.1			Estr.2			Estr.3		
	Eólico	Termo solar	Biomasa	Eólico	Termo solar	Biomasa	Eólico	Termo solar	Biomasa
Otros insumos*	19%	16%	36%	25%	19%	36%	19%	14%	37%
Inversión/c apital**	73%	70%	49%	67%	65%	45%	81%	86%	50%
Trabajo***	7%	14%	14%	8%	15%	19%	0%	0%	13%

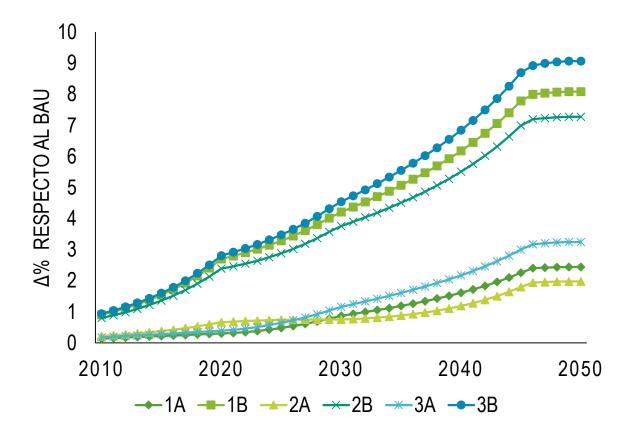
^{*} incluye materiales, desarrollos y otros costos

^{***} incluye remuneración a trabajadores en la fase de construcción instalación, operación y mantenimiento.

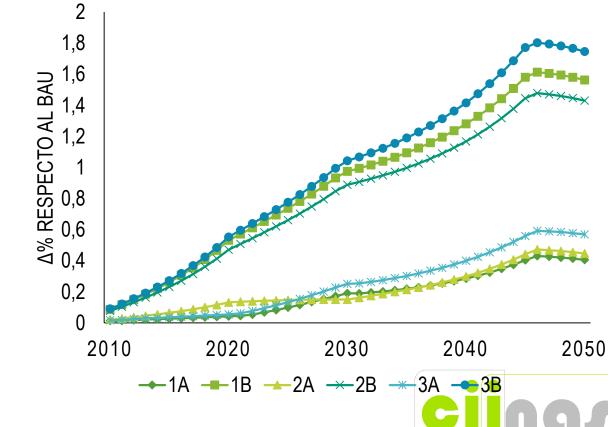
^{**} incluye inversiones y costos financieros

Modelo híbrido: supuestos

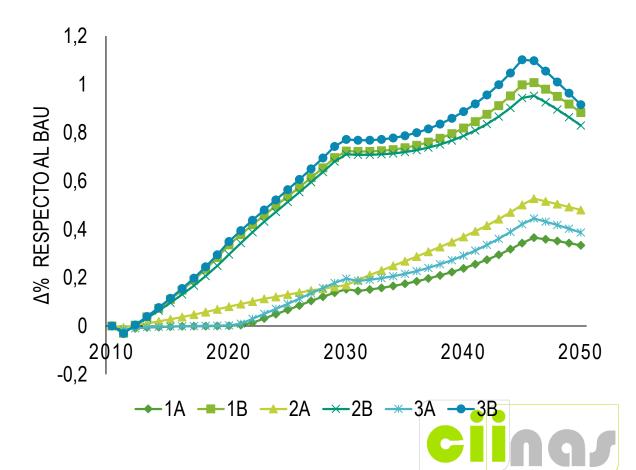
- Plena movilidad de factores
- No hay transmisión y distribución
- Un hogar representativo
- Comercio exterior
 - · Colombia es exportador neto de energía.

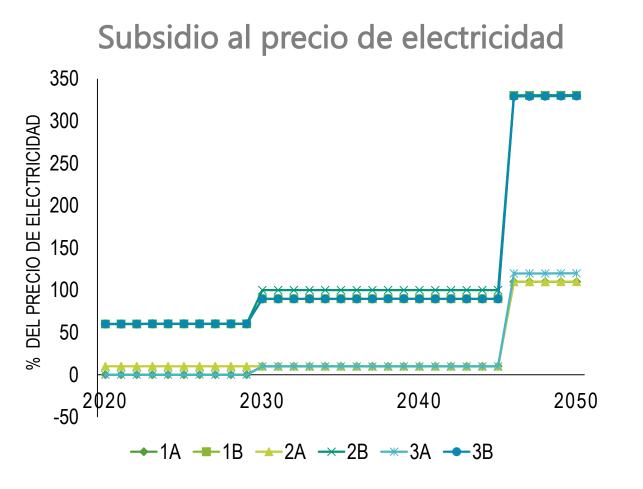

Evaluación de escenarios de política

- 1. Penetración de renovables no convencionales en la generación eléctrica:
 - Incremento de 2% en la generación de energía eléctrica

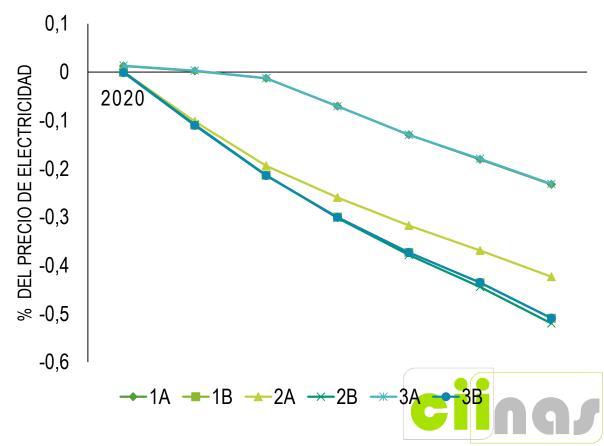

- 2. Impuesto al carbono:
 - impuesto al contenido de Co2eq en combustibles fósiles para cumplir la reducción del 20% en el año 2030 (NDC).

Inversión


Consumo intermedio

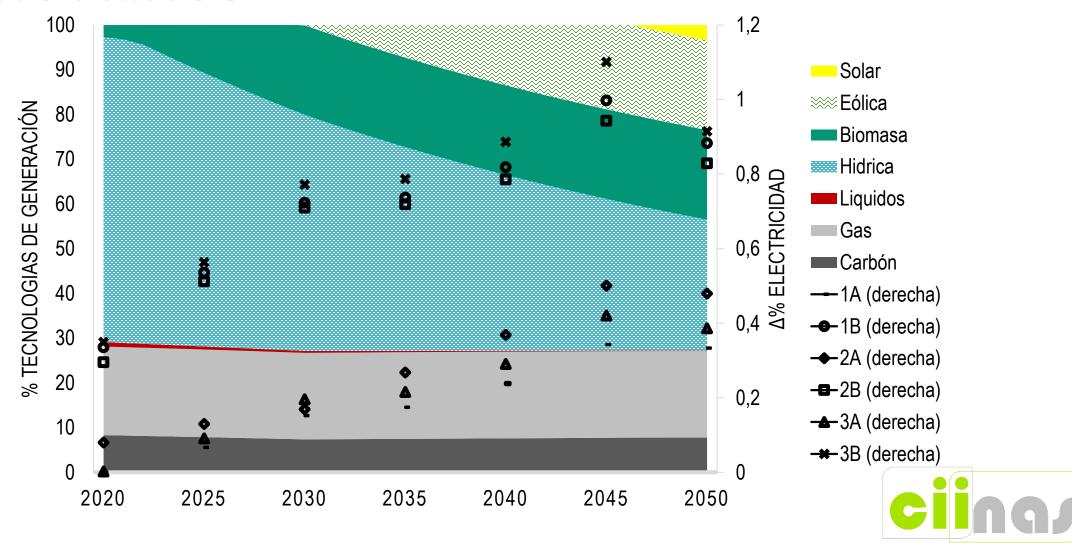


Demanda de hidrocarburos y carbón



Demanda de electricidad

Emisiones de GEI


Δ% RESPECTO AL BAU

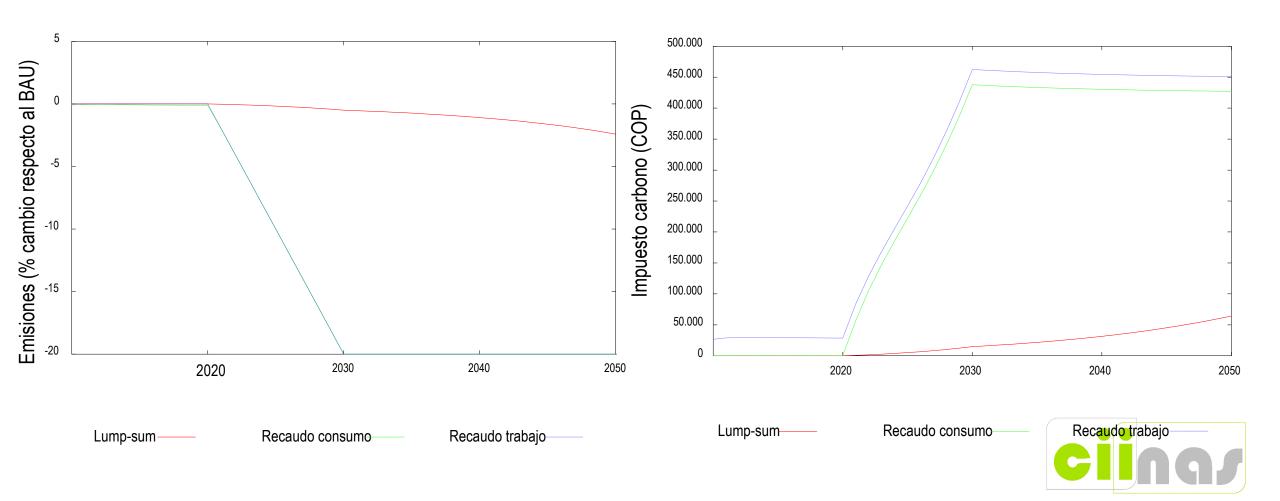
-1,4

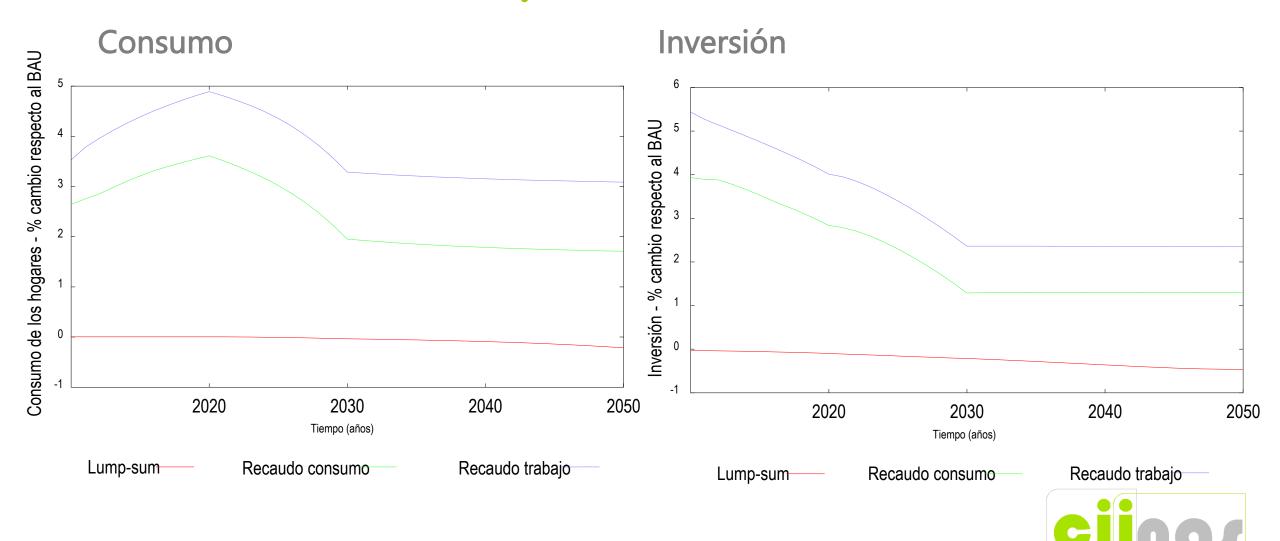
2010 2020 2030 2040 2050 -0,2 -0,4 -0,6 -0,8

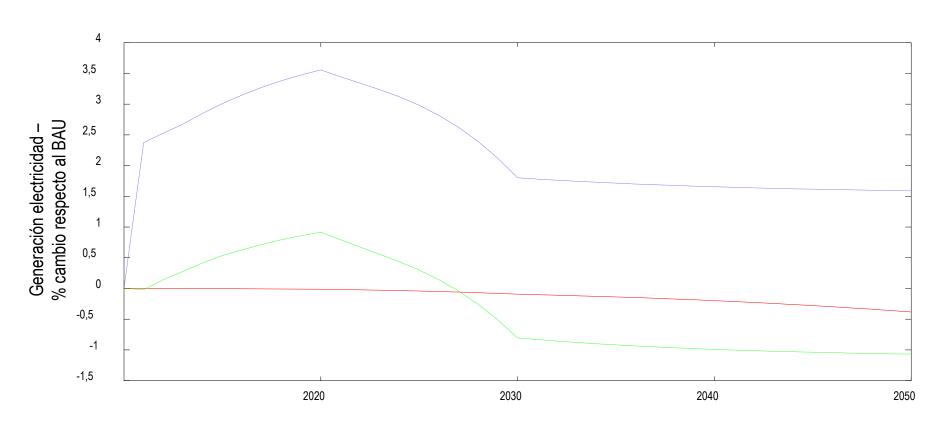
→1A —1B →2A —2B —3A →3B

No aumenta la participación de energía térmica y el desempeño económico no se afecta negativamente, pero no hay efectos ambientales esperados.

¿Qué sucede con el recaudo del impuesto? ¡Regresa a la economía!

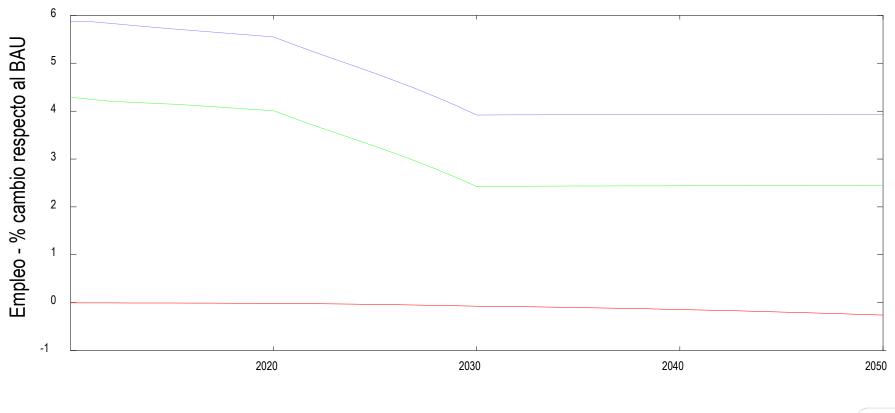

Destinación:


- transferencia de suma fija a los hogares (lump-sum),
- reducción en los impuestos al consumo, y
- reducción en los impuestos al trabajo


Emisiones - Δ%

Valor del Impuesto (\$/tCO₂eq)

Generación eléctrica


Lump-sum —

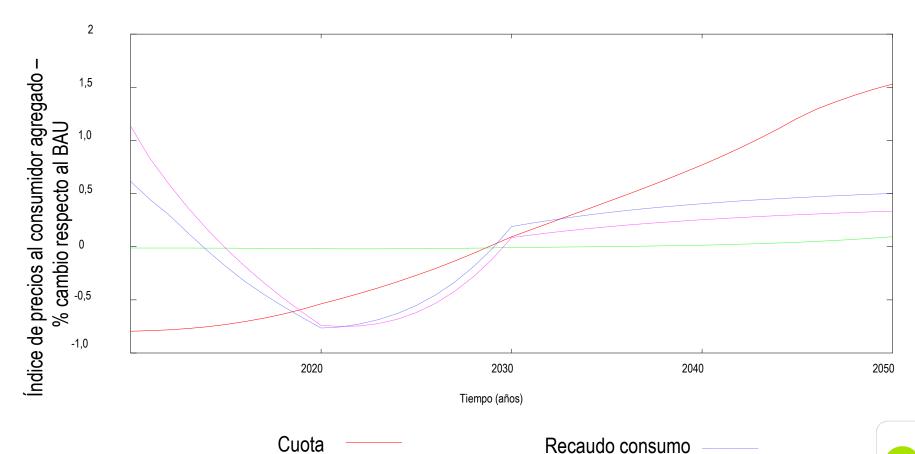
Recaudo consumo-

Recaudo trabajo

Empleo

Recaudo

consumo


Lump-sum

ciinas

Recaudo trabajo

Lump-sum

Índice de precios al consumidor

Recaudo trabajo

No hay incompatibilidad entre el crecimiento económico, el ambiente y la energía. El impuesto mejora el desempeño de la economía y genera el impacto ambiental deseado, principalmente sí se fomenta el trabajo.

Mensajes finales

- ✓ Integrar modelos BU y TD constituye un avance metodológico que permite comprender, de mejor manera, las implicaciones socioeconómicas de medidas que busquen el balance entre energía y ambiente.
- ✓ Información útil para los tomadores de decisiones que permita trazar sendas en el cual exista un balance entre energía, ambiente y crecimiento.

Mensajes finales

- ✓ Se debe fomentar oferta nacional de componentes requeridos por las tecnologías. Aumentaría la demanda laboral.
- ✓ Se debe contrastar los resultados con potenciales reales por recurso e incorporar otras tecnologías (CCS)
- ✓ Tecnología solar como parte del sistema interconectado. Pero los usuarios puede suplir sus requerimientos energéticos a partir de paneles solares

Mensajes finales

- ✓ Considerar los impactos ambientales en la implementación de tecnologías renovables no convencionales
 - ✓ Biomasa => uso del suelo, pérdida de biodiversidad u otros servicios ecosistémicos. Análisis de ciclo de vida de componentes.
- ✓ Exportaciones de bienes no energéticos, menor uso de hidrocarburos y el aumento en el empleo son objetivos deseables, a partir de consideraciones ambientales.
- ✓ ¿es posible hablar de crecimiento "verde"? Si

Bibliografía

- Böhringer, C., & Rutherford, T. (2008). Combining bottom-up and top-down. *Energy Economics, 30*, 574 596.
- Cai, Y., Newth, D., Finnigan, J., & Gunasekera, D. (2015). A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation. *Applied Energy*, *148*, 381 395.
- Dai, H., Mischke, P., Xie, X., Xie, Y., & Masui, T. (2016). Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO2 emissions. Applied Energy, 162, 1355–1373
- Kuik, O., Brander, L., & Richard, S. T. (2009). Marginal abatement costs of green house gas emissions: A meta-analysis. *Energy Policy*, 1395-1403.
- Labriet, M., Drouet, L., Vielle, M., Lou Lou, R., Kanudia, A., & Haurie, A. (2015).
 Assesment of the effectiveness of global climate policies using coupled bottom-up and top-down models. Fondazione Eni Enrico Mattei. nota di Lavoro 23.
- Lutsey, N., & Sperling, D. (2008). America's bottom-up climate change mitigation policy. *Energy Policy*, *36*, 673 685.
- Maréchal, K. (2007). The economics of climate change and the change of climate in economics. *Energy Policy*, 35, 5181 – 5194.
- Shukla, P. (2013). Review of linked modelling of low-carbon development, mitigation and its full costs and benefits. . *Research Paper MAPS programme*.
- Tapia-Ahumada, K., Octaviano, C., Rausch, S., & Pérez-Arriaga, I. (2015).
 Modeling intermittent renewable electricity technologies in general equilibrium

models. *Economic Modelling*, 51, 242 – 262.

- Tuladhar, S., Yuan, M., Bernstein, P., Montgomery, W., & Smith, A. (2009). A top-down bottom-up modeling approach to climate change policy analysis. *Energy Economics*, *31*, S223–S234.
- Van der Mensbrugghe, D. (2008). *The Environmental Impact and Sustainability Applied General Equilibrium (ENVISAGE) Model.*
- Wing, I. S. (2008). The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework. *Energy Economics*, *30*, 547 573.
- Woollacott, J., & Wing, I. (2014). Greenhouse Gas Policy in the Electric Sector Measuring the Costs and Ancillary Bene. *Working paper*, 1 28.
- Zhang, D., Karplus, V., & Rausch, S. (2015). *Capturing Natural Resource Dynamics in Top-Down Energy-Economic Equilibrium Models.* Cambridge: MIT.

¡Gracias!

Andres Camilo Álvarez-Espinosa acalvareze@corporacionciinas.org

Contacto

corporacionciinas@corporacioonciinas.org

Síganos en

Twitter: <a>@CIINAS

Linkedin: Corporación para la investigación y la

innovación

Tel: (57) 1 - 6955436

Bogotá, Colombia.

Corporación para la invertigación y la innovación CIINAS

Desde 2011 somos una corporación no gubernamental que ofrece a las organizaciones soluciones ambientales, sociales y económicas, creadas a partir de procesos de investigación e innovación, para adoptar modelos de sostenibilidad integral.

